
Developing a Cognitive Model of Expert Performance for Ship Navigation
Maneuvers in an Intelligent Tutoring System

Jason H. Wong1, Susan S. Kirschenbaum1, Stanley Peters2
1 Naval Undersea Warfare Center, Newport, RI

2 Stanford University, Stanford, CA
jason.h.wong@navy.mil, susan.kirschenbaum@navy.mil, peters@csli.stanford.edu

Keywords:

expert performance, ship navigation, perceptual heuristics, intelligent tutor, cognitive task analysis

ABSTRACT: The goal of this project is to develop a cognitive model of expert ship-handling performance. This
model was integrated with an intelligent tutoring system and an immersive visual simulation used by the U.S. Navy.
This intelligent tutor and expert cognitive model (written in a Java-based version of ACT-R) provides feedback to the
student based on the student actions in order to reduce workload on the instructors. The nature of ship navigation and
the requirements for the intelligent tutor presented unique challenges for development. This paper describes how the
resulting cognitive model balances a need for expert performance while compensating for student error, uses
perceptual heuristics when the ACT-R vision module is not feasible, and how these and other issues affected model
development. Future plans for system test and evaluation are also discussed in the context of improving training.

1. Project Overview

The Conning Officer Virtual Environment (COVE) is
a ship-handling simulation system used by the U.S.
Navy to train officers in how to complete ship
navigation maneuvers (known in the U.S. Navy as
ship-handling “evolutions”). These can include
docking a ship, getting a ship underway, or twisting a
ship about its axis. This training occurs after students
undergo classroom instruction, so this simulation
provides a hands-on practice environment for novices.
COVE, which is based on the Virtual Ship software
(Computer Sciences Corporation, 2009), is used to
provide students with ship-handling training without
the cost or risk to equipment of at-sea exercises. One
downside to this system is that an expert instructor is
required to constantly monitor progress and provide
feedback, no matter how basic the exercise.

In order to reduce the overall workload on instructors,
the goal of this project was to develop a system
consisting of a set of new components that interact
with each other. One component is an intelligent tutor
(Bratt, Schultz & Peters, 2007) that monitors student
progress and provides appropriate feedback. The
second component, and the subject of this paper, is a
cognitive model (developed using a Java-based
implementation of ACT-R; Harrison, 2009) of expert
performance. This model is designed to represent
expert performance in various ship navigation
evolutions to provide a point of comparison against
the actions taken by the student.

The requirement that the model represent human
performance led to the selection of ACT-R (Anderson,
et al., 2004; Anderson, 2007) as choice of cognitive
architecture to implement the specific cognitive and
perceptual operations used in completing an evolution.
The use of a cognitive architecture guides the creation
of a system that represents human cognition (and its
limits) instead of a computer-based algorithmic
solution that ignores the constraints of cognition.

The expert model was designed to provide the tutor
with a sense of how an expert would perform the
navigation evolution, including the actions taken, rules
followed, and perceptual cues that are used. The entire
system would then be able to give feedback to the
student based on the actions taken and visual cues
examined. While some cognitive models have been
developed to operate with other components, few have
been developed to support an intelligent tutoring
system, and this presents a unique set of challenges.

2. Description of System Components

The task environment that the cognitive model
operates in consists of multiple pieces. The primary
component is the COVE simulation software itself.
The simulation strives for realism in many important
areas (Smallman & St. John, 2005), including
elements in the visual environment such as
hydrodynamics, weather, currents, piers, buoys, and
ships. Some ships are also modeled in high-fidelity;
that is, the physics of the engine and rudder are
accurately modeled instead of the ship following a

Proceedings of the 19th Conference on Behavior Representation in Modeling and Simulation, Charleston, SC, 21 - 24 March 2010

29

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAR 2010 2. REPORT TYPE

3. DATES COVERED
 00-00-2010 to 00-00-2010

4. TITLE AND SUBTITLE
Developing a Cognitive Model of Expert Performance for Ship
Navigation Maneuvers in an Intelligent Tutoring System

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Undersea Warfare Center,1176 Howell Street,Newport,RI,02841

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADA538937. Presented at the Proceedings of the Conference on Behavior Representation in
Modeling and Simulation (19th), held in Charleston, South Carolina, 21 - 24 March 2010. Sponsored in
part by AFRL, ARI, ARL, DARPA, & ONR.

14. ABSTRACT
The goal of this project is to develop a cognitive model of expert ship-handling performance. This model
was integrated with an intelligent tutoring system and an immersive visual simulation used by the U.S.
Navy. This intelligent tutor and expert cognitive model (written in a Java-based version of ACT-R)
provides feedback to the student based on the student actions in order to reduce workload on the
instructors. The nature of ship navigation and the requirements for the intelligent tutor presented unique
challenges for development. This paper describes how the resulting cognitive model balances a need for
expert performance while compensating for student error, uses perceptual heuristics when the ACT-R
vision module is not feasible, and how these and other issues affected model development. Future plans for
system test and evaluation are also discussed in the context of improving training

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

8

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

simple speed and course. All of these elements are
rendered in an immersive environment that can be
displayed on a single monitor, in a more complex
multiple monitor setup, or using a head-mounted
display. A screenshot of the rendered scenario can
been seen in Figure 1 (top). The multi-monitor setup is
complete with head-tracking, control through voice
recognition, text-to-speech capability, and a separate
instructor console for monitoring performance.

COVE scenarios are created using specially designed
software that includes detailed real-world ports and
realistic ships that are placed in the environment.
Ships can be given a set of waypoints to follow, new
physical objects can be added, and the weather can be
changed using the scenario creator (Figure 1, bottom).

Figure 1.

The student interacts directly with the COVE
simulation, issuing verbal commands, listening to
responses and status reports, and viewing the
environment and the ship under their command
(known as “ownship”). The intelligent tutoring system
adds two components into this dynamic – an
intelligent tutor and expert model (Figure 2). The tutor

monitors student progress and compare the student’s
actions with those of the expert model in order to
provide feedback. The expert model needs to
accomplish various navigation evolutions and inform
the tutor as to what actions were taken and why.

Figure 2.

This intelligent tutor/cognitive model system is
designed to be implemented in the complex multi-
monitor COVE simulators, which presented many
challenges, including how vision is accomplished. The
ACT-R vision component can only handle a single
display, so a software solution was created to
compensate for this shortfall and will be described in
further detail later in the paper.

3. Ship Navigation Maneuvers

Several different ship navigation tasks varying in
complexity were modeled. One basic evolution is
intersecting a range, where a ship is transiting and
must make a turn to intersect a new heading. While
this may seem trivial, there is much skill in knowing
when to begin the turn, how hard to take the turn, and
when to ease off the engines and rudder. Another
basic evolution is twisting a ship in a box, which
involves rotating the ship on its pivot point without
moving the ship forwards or backwards. This is
difficult because students often do not have previous
experience performing this kind of maneuver, and
managing the engines and rudder so that the ship does
not move laterally is a challenge.

Advanced navigation evolutions are also going to be
modeled. To a great extent, these use more basic
evolutions as building blocks (Rigeluth, 2007). For
example, getting underway from the dock involves
twisting the ship away from the pier, transiting
forward and then making a turn to go out to sea. There
is more to keep track of with these complex tasks, but
they still use basic maneuvers at their core.

Proceedings of the 19th Conference on Behavior Representation in Modeling and Simulation, Charleston, SC, 21 - 24 March 2010

30

The intelligent tutoring system was not designed to
replace the current ship-handling curriculum already
in place. Instead, the system would augment training
by supporting the scaffolding approach already taken
by the course: begin by mastering simple maneuvers,
then grow those into more complicated ones over the
length of the training. The tutoring system supports
both simple and complex maneuvers, so students can
use the system throughout the course.

All of these tasks are difficult for students to grasp due
to a number of factors. The hydrodynamics of
maneuvering a ship can be difficult to understand,
since students rarely have prior experience with ship-
handling. Additionally, the tools available to affect the
ship’s speed and heading (rudder, port and starboard
engines, and a tugboat in some cases) work differently
when used in different combinations. Finally, there is
often a lag between issuing a command (e,g,, “All
engines ahead full”) and observing the effect of that
command (e.g., increased speed), so a comprehension
of cause-and-effect can take time to develop.

Another factor is that there are many paths to
accomplish the same goal. One expert may attempt to
increase the rate of ownship turn by increasing engine
speed while another may instead decide to set the
rudder farther over. Both options are correct, and it
was important to capture all the possibilities. Also,
different experts may teach their preferred method of
accomplishing a task, increasing the necessity of the
cognitive model and tutor to accommodate all the
action paths available to the student. Finally, if the
student deviates from a given parameter, the expert
model must still function even if the action was not
one of an “expert.”

Implementing these ship navigation maneuvers in a
cognitive model was difficult due to the perceptual
nature of these maneuvers. Intersecting a range
requires starting a turn, assessing speed through visual
cues such as motion parallax (the apparent
displacement of objects caused by a change in
observer position), and lining up two separate range
markers to ensure that the ship is in the ideal position
in a harbor channel. These perceptual judgments often
occur in the form of heuristics. An example heuristic
used by baseball outfielders is that they will keep a
constant visual angle between themselves and the ball
instead of performing complex calculations (McBeath,
Shaffer & Kaiser, 1995). These heuristics also apply
to ship navigation and were implemented into a
cognitive model. Determining how these strategies are

used was derived from a combination of expert
interviews and observing ship-handling performance.

4. Expert Model Development

ACT-R was a natural choice of cognitive architecture
due to the requirement of cognitive plausibility of the
expert ship-handling model. Due to the necessity for
the cognitive model to communicate with COVE and
the intelligent tutor, the model was developed in Java-
based jACT-R (Harrison, 2009) instead of Lisp-based
ACT-R. Using Java increased compatibility with other
system components and was more easily modified by
those unfamiliar with Lisp, since Java is a more
accessible language. jACT-R was designed to be as
similar to ACT-R as possible, especially in terms of
retaining the aspects of cognitive plausibility in the
architecture.

The primary focus of developing a cognitive model
for this project is the accurate modeling of several
factors. One factor involves the possible actions that
an expert could perform in order to maneuver the ship,
and another is the perceptual monitoring and scanning
behaviors that takes place to ensure successful
completion of a navigation task.

4.1 Task Analysis Foundations for the Model

In order to develop a cognitive model of expert ship
navigation, subject matter experts from the Naval
Surface Warfare Officers School were consulted over
multiple sessions. One phase of information collection
involved watching students practicing using COVE
and examining the feedback that instructors provided
them. By analyzing the tone (positive or negative) and
content of the feedback (pre-action advise or post-
action critique), an understanding was developed of
what aspects of ship-handling were emphasized and
evaluated by human instructors. This influenced the
development of the intelligent tutor as well as the
expert model. For example, it became quickly
apparent that the use of perceptual cues was critical to
success. Also, a majority of the feedback came after
an action was taken, so the student had to be allowed
to make a mistake first.

Another phase of information collection centered
around how course instructors performed various ship-
handling maneuvers. Experts were interviewed and
observed performing these tasks in the COVE
simulator. These sessions were analyzed and distilled
into cognitive task analyses. These took the form of a

Proceedings of the 19th Conference on Behavior Representation in Modeling and Simulation, Charleston, SC, 21 - 24 March 2010

31

traditional task analysis (which lists a sequence of
observable tasks). Additionally, internal cognitive
processes were also taken into account (Zachary,
Ryder & Hicinbothom, 1999) and included.

The task analysis framework known as GOMS (goal,
operator, method, selection; Card, Moran & Newell,
1983; John & Kieras, 1996) was selected for the task
analysis because of the hierarchical nature of the
tasks. There is a specific order as to which events
happen, so representing tasks as a series of goals and
sub-goals provided a great deal of benefit when
translating these task analyses into cognitive models.
For some navigation evolutions, GOMS-like task
analyses were already completed (Grassi, 2000), so
they were integrated into this project.

However, navigation maneuvers do not lend
themselves perfectly to GOMS modeling. GOMS does
not take into account the perceptual cues that are used
in ship navigation. As an example, Figure 3 shows
two range markers (the orange and white boards) that
serve as a visual cue for ownship heading when they
are lined up with the bow jackstaff. While GOMS is
able to support a goal such as “Monitor speed until
desired heading achieved,” there are a number of
perceptual cues that indicate heading (such as range
markers) that may be used in various combinations,
and GOMS does not include a method for
incorporating these visual cues.

Figure 3.

Due to this shortfall, a Critical Cue Inventory (CCI)
was created to support a list of perceptual cue
descriptions that could be used to accomplish a goal.
The CCI could also include heuristics as to when a
particular visual cue is more likely to be used, which

aided in building the expert cognitive model. An
example truncated CCI used for determining the rate
of swing of the bow can be found in Table 1.

Table 1.

Critical Cue Inventory for:
Determine Rate of Swing of Bow

CUE DESCRIPTION
Jackstaff Examine the rate of swing of the

jackstaff compared to a fixed
environmental object. Used when
there is a physical landmark present.

Rate of Turn
indicator

Interpret the Rate of Turn visual
indicator in the COVE instrument
cluster.

Change in
heading

Determine how quickly the heading
is changing over time using the
various heading indicators. Used
when there is a lack of landmarks.

4.2 Goal Stack Component

The cognitive model built in jACT-R used many
standard components in ACT-R models, including the
goal and retrieval buffers. Nonetheless, there are
several noteworthy characteristics of the model that
arose from project requirements. The first is the
implementation of a goal stack that drives the entire
execution of the cognitive model. Due to the
hierarchical nature of navigation evolutions, it is only
natural to create a chunk that can hold multiple goal
levels in the goal buffer. Various productions push
and pop goals from the stack, and the state of the goal
stack is checked during the conflict resolution process
to determine which production to fire next.

Certain steps in a navigation evolution must occur at a
specific time, and properly utilizing the goal stack
assisted with this need. Knowing when a turn is
complete, for example, requires monitoring ownship
heading or lining up the jackstaff with an
environmental object. The production to stop the turn
(i.e., “approaching-heading-NOW-stop-turn”) needs to
fire when the goal stack matches specific conditions.
The bottom of the goal-stack needs to match the basic
goal of “make-turn,” and a goal at the top needs to
match the goal of “monitor-until-desired-heading-
reached.” Once these conditions are met, the
production “pops,” or removes, the old goal from the
stack and “pushes” on a new goal which, presumably,
would stop the turn by shifting the rudder or slowing

Proceedings of the 19th Conference on Behavior Representation in Modeling and Simulation, Charleston, SC, 21 - 24 March 2010

32

the engines.

This implementation aids in creating generic
productions that are needed by many different higher-
level goals and may occur multiple times throughout
an evolution (e.g., “activate-rudder”). The entire goal
stack does not need verification – instead, the
production only needs to check the top goal. None of
the other goals below need to be checked – for
example, it does not matter whether a lower-level goal
is “make-turn” or “twist-ship.” Either way, the rudder
must be activated. Another advantage from being able
to check specific goals within the goal stack is that
multiple possible action paths to complete a task are
easily implemented.

Figure 4 contains a jACT-R pseudocode example that
checks the goal stack. The top production is generic
and may be called multiple times in an evolution. This
production also does not need to verify the entire goal
stack. The bottom production must occur at a specific
time and checks each level of the goal stack.

<!-- This generic production only needs to
ensure the top goal is to issue the engine order -->
 <production name="issue-starboard-engine-order">
 <conditions>
 <match buffer="goal" >
 <slot name="goal-2" equals="issue-starboard-
engine-order"/>
...

<!-- This specific production ensures the top goal
matches the desired goal and the other goals also
match (or are clear) -->
 <production name=”monitor-speed-heading-until-
turn-time”>
 <conditions>
 <match buffer=”goal” >
 <slot name=”goal-1” equals=”ownship-ahead”/>
 <slot name=”goal-2” equals=”monitor-until-turn-
time”/>
 <slot name="goal-3" equals="clear"/>
 <slot name="goal-4" equals="clear"/>
...

Figure 4.

4.3 Use of Perceptual Cues

There are many visual cues in the environment that an
expert uses to properly execute ship maneuvers. It was
necessary to pull this information from the COVE
simulation directly instead of going through the jACT-
R vision module, but it was critical to maintain
cognitive plausibility for vision in the model, so the
software pulling information from the COVE
simulation must act “behind the scenes” to fill a

jACT-R buffer that is accessible to the model. Even a
basic subgoal, such as visually scanning to assess ship
status (speed, heading, etc.) required accurate
cognitive modeling. Experts will often alternate
between paying attention to the environment and to
the ship status indicators while executing a navigation
evolution, and cycling between these objects takes
place frequently. This behavior was assessed in
experts through interviews and head-tracking within
the COVE system.

This scanning behavior was inserted into the model so
the expert model’s current awareness of the situation
correctly reflects the experience of a human expert.
From this, the intelligent tutor can detect if the student
is exhibiting similar scanning behavior. If this was not
the case, the tutor can issue prompts to the student to
check speed, heading, rudder status, and other
important parameters.

Another example that demonstrates the criticality of
the vision system is the monitoring of specific
perceptual thresholds (e.g., to know when to begin and
end turns, when ownship is far enough away or close
enough to the dock, etc.). Experts do not intently stare
at one location in the environment waiting for this
threshold to be passed, nor are they able to focus on
more than one area at once. Instead, scanning behavior
is used (again derived from interviews and head-
tracking), and the expert model needed to accurately
capture this behavior.

The standard vision module within jACT-R is able to
gather visual information from a display using
attentional and imagery constructs, and locations are
represented by their x- and y-positional screen
coordinates. This vision scheme has been
implemented successfully in heavily perceptual tasks
such as driving (Salvucci, Boer & Liu, 2001).
However, the COVE simulation is too complex to use
the relatively basic jACT-R vision module. This is
because the visual scene is distributed amongst
multiple monitors and computers, which the vision
module cannot handle. Instead, information must be
passed directly from the simulation to the Java core of
jACT-R using a client-server model. This information
is then inserted into a buffer created for this model.

The solution to this problem was to implement
“vision” through external software. COVE generates
the rendered environment and keeps track of some
environmental objects (e.g., piers), the environmental
conditions (e.g., current and wind speed), and the

Proceedings of the 19th Conference on Behavior Representation in Modeling and Simulation, Charleston, SC, 21 - 24 March 2010

33

status of all the ships (e.g., speed and course of
ownship, tugs, etc.). The simulation does not keep
track of objects such as buoys, and the locations of
those objects had to be measured manually and
inserted into a separate database. Together, these
components possessed the information that the expert
cognitive model would otherwise try and obtain
through more traditional means of vision. It was more
efficient and easier to retrieve the necessary
information about the environment directly from
COVE instead of attempting to adapt the jACT-R
vision module.

A technical necessity for the entire tutoring system
was the separation of various system components. The
COVE simulation needed to remain a separate entity.
While the expert model is an important piece of the
intelligent tutor, the tutor itself also needed the option
to run as a standalone component. Due to the need for
separation between each system component, software
bridges were built to interface between the COVE
software, the Java core of jACT-R, and the intelligent
tutor. The bridge between COVE and jACT-R
requests information from COVE and then fills a
custom jACT-R buffer that is accessible by the
cognitive model. This buffer was programmed as an
Eclipse IDE plug-in and imported into jACT-R.

A simple example will help illustrate this process. In
the case of monitoring ownship speed, a human expert
would look down at a console (on a monitor separate
from the rendered environment) and read off the
speed. For the cognitive model to do this, it would
request the speed from the COVE-ship-state buffer
(similar to requesting a particular chunk from the
retrieval buffer) first. This buffer is refreshed by the
COVE/Java bridge, which periodically queries the
COVE software as to the state of the simulation,
which includes ownship speed information.

This software bridge allows for the simulation of
many of the visual cues utilized by human experts but
is pulled directly from the simulation. Therefore, the
perceptual cues and heuristics used by human experts
are still present in the cognitive model because the
software bridge is abstracted away from the model.
This abstraction allows for the ability of the model to
accomplish something akin to traditional vision in a
cognitively plausible manner.

4.4 Cognitive Plausibility

Defining cognitive plausibility for this expert

cognitive model was different from many other
models. The purpose of the expert model within the
tutoring system is to act as an “answer key” to
compare against student actions. Therefore, the expert
is not supposed to commit errors. For example, there
is no need to learn new actions, nor is there need for
millisecond accuracy in cognitive function. Also,
memory decay was not implemented. Instead, the
expert model implemented visual scanning behavior
between the environment and ownship status
indicators to refresh memory. This reflects student
behavior because they are often told not to trust their
own memory.

A plausible expert, especially one that is used as a
yardstick to measure human students against, should
always perform an evolution as flawlessly as possible.
However, an expert model that is part of a tutoring
system must also be able to adapt to student behaviors,
which are not always optimal. The first iteration in
creating a model for any ship-handling evolution
represented optimal performance of a maneuver. Once
this was achieved, multiple action paths were built out
from this single path. For example, the expert model
knows the optimal distance from a range in which to
make a turn, and this behavior is the model default. If
the student overshoots this range, the expert model
was designed to compensate for the error. This action
path may result in using a greater amount of rudder
than is typically called for. While suboptimal, it was
important that the model possess these behaviors both
for some degree of cognitive plausibility and to be a
useful components of the intelligent tutor.

One area where it was especially important to
maintain cognitive plausibility was in visual scanning
behavior. If a computer program was written that did
not take into account the limits of human cognition,
then a student would be compared to a computer
instead of a simulated human expert. While a
computer could monitor multiple information streams
at once, this would not reflect human cognition.
Instead, a reflection of expert human behavior would
require scanning multiple sources of data in a serial
manner.

5. Empirical Validation

Traditional validation of cognitive models seeks to
match human performance with that of the model,
typically on a temporal scale. For example, an
accurate cognitive model of visual search should
generate target detection times that are similar to

Proceedings of the 19th Conference on Behavior Representation in Modeling and Simulation, Charleston, SC, 21 - 24 March 2010

34

human reaction times. Here, we are attempting to
match the perceptual actions of an expert instead. The
actions taken by the model do need to occur with
some degree of temporal accuracy, but the millisecond
modeling accuracy of jACT-R is not necessary for this
application.

An important first step of validation involves
demonstrating a complete system to the instructors
who will be using the system for instruction. This has
already been done with the standalone intelligent tutor
system, which only contained rudimentary knowledge
about ship-handling (e.g., maximum limits on speed).
The system was well-received by instructors, who
noted that feedback on perceptual components of the
task would add to the utility of the final product.

Further validation steps have not occurred but are
currently being planned. One important step in this
model validation plan will examine how the entire
tutoring system performs when a novice student uses
the simulation. This will be tested on actual students
taking a ship-handling course, but can also be tested
on non-student novices. The critical data to collect
from these experiments is the performance of the
expert model. This is to ensure that the model was
able to traverse the multiple action paths in response
to student performance. For example, if a novice stops
a turn too late, the model should react by shifting the
rudder in the opposite direction. If the model had
direct control of the ship, this mistake should not have
happened in the first place. However, the model does
not have control and must compensate for many errors
that a novice can make. This will require many
novices and hours of testing, but will serve to make a
more robust model.

A critical final test of the intelligent tutor and expert
model system is to determine how training is
improved with use of this system. Improvement will
be measured along several factors, including
performance in ship maneuvering (measured across
several variables such as time to completion and
deviation from optimal channel position), amount of
training retention, and number of human instructor
hours required during training. The hope is that the
tutor can increase the number of students that a single
instructor can supervise while maintaining the same
level of (or improving) training effectiveness.

6. Conclusions

While there have been other projects that have

integrated a cognitive model into a larger framework,
these have mostly focused on training applications by
creating a simulated teammate to work with other
humans (Scolaro & Santarelli, 2002; Ball, et al.,
2009). The project described here also works within a
larger framework, but not in a team context. Instead,
the model represents a single expert that changes its
behavior in direct response to student actions.

This project presents a unique application of the
jACT-R cognitive architecture in many ways. The
requirements for the project necessitated the
development of an expert cognitive model that needed
to balance cognitive plausibility with near-flawless
expert performance, perceptual heuristics without
actual vision, and multiple action paths with an
emphasis on tutoring. As intelligent tutoring systems
are becoming increasingly popular, it is important to
understand how cognitive modeling can add to these
systems in a useful way.

While an expert model “answer key” cannot make
mistakes such as memory retrieval failures, the model
must compensate for student errors in order to remain
useful. This required a far more extensive knowledge
gathering period in order to explore task performance
more fully, and also requires a greater testing period to
ensure that many practical possibilities for behaviors
that deviate from the optimum are accounted for.

Intelligent tutoring systems are often used in complex
environments, which requires ACT-R models to
perceive information that cannot be retrieved through
the current, primitive vision module. Instead, software
bridges must interface between the simulation and
ACT-R itself, but the simulation environment must
remain abstracted away from the model to maintain
cognitive plausibility. Overall, cognitive modeling has
a great deal to offer intelligent tutoring systems, and
an optimal methodology to create these models is
currently being shaped.

7. References

Anderson, J. R. (2007). How Can the Human Mind

Occur in the Physical Universe? New York:
Oxford University Press.

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass,

S., Lebiere, C., & Qin, Y. (2004). An integrated
theory of the mind. Psychological Review, 111(4),
1036-1060.

Ball, J., Myers, C., Heiberg, A., Cooke, N., Matessa,

Proceedings of the 19th Conference on Behavior Representation in Modeling and Simulation, Charleston, SC, 21 - 24 March 2010

35

M., & Freiman, M. (2009). The Synthetic
Teammate Project. 18th Conference on Behavior
Representation in Modeling and Simulation,
Sundance, UT.

Bratt, E. O., Schultz, K., & Peters, S. (2007).

Challenges in Interpreting Spoken Military
Commands and Tutoring Session Responses.
Grammar Engineering Across Frameworks 2007,
Stanford, CA.

Card, S., Moran, T., & Newell, A. (1983). The

Psychology of Human-Computer Interaction.
Hillsdale, NJ: Lawrence Erlbaum Associates.

Computer Sciences Corporation. (2009). Virtual Ship

[Computer Software]. Retrieved December 1,
2009.

Grassi, C. R. (2000). A task analysis of pier-side ship-

handling for virtual environment ship-handling
simulator scenario development. Masters Thesis
at the Naval Postgraduate School.

Harrison, A. M. (2009). jACT-R [Computer

Software]. Retrieved December 1, 2009, from
http://jactr.org/.

John, B. E., & Kieras, D. E. (1996). The GOMS

Family of User Interface Analysis Techniques:
Comparison and Contrast. ACM Transactions on
Computer-Human Interaction, 3(4), 320-351.

McBeath, M. K., Shaffer, D. M., & Kaiser, M. K.

(1995). How baseball outfielders determine where
to run to catch fly balls. Science, 268(5210), 569-
573.

Reigeluth, C.M. (2007). Order, first step to mastery:

An introduction to sequencing in instructional
design. In F. Ritter, J. Nerb, E. Lehtinen, & T.
O’Shea (Eds.), In Order to Learn: How the
Sequence of Topics Influences Learning. New
York, NY: Oxford University Press.

Salvucci, D. D., Boer, E. R., & Liu, A. (2001).

Toward an Integrated Model of Driver Behavior
in a Cognitive Architecture. Transportation
Research Record, 1779, 9-16.

Scolaro, J., & Santarelli, T. (2002). Cognitive

Modeling Teamwork, Taskwork, and
Instructional Behavior in Synthetic Teammates.
11th Conference on Computer Generated Forces
and Behavioral Representation, Orlando, FL.

Smallman, H. S., & St. John, M. (2005). Naive

Realism: Misplaced Faith in Realistic Displays.

Ergonomics in Design, 13(3), 6-13.

Zachary, W. W., Ryder, J. M., & Hicinbothom, J. H.

(1999). Building Cognitive Task Analyses and
Models of a Decision-making Team in a Complex
Real-time Environment. In J. M. Schraagen, S. F.
Chipman, & V. J. Shalin (Eds.), Cognitive Task
Analysis (pp. 365-383). Mahwah, NJ: Lawrence
Erlbaum Press.

Acknowledgments

The Office of Naval Research program of Training,
Education, and Human Performance sponsored this
research. Thanks to Alden Daley, Jia Huang, and
Anthony Harrison for jACT-R and coding support.

Author Biographies

DR. JASON H. WONG is a Human Factors Scientist
with the Naval Undersea Warfare Center. He received
his Ph.D. in 2009 from George Mason University and
applies his research to projects that integrate cognitive
theory and system design. He examines the human-
computer interaction aspects of complex systems,
creates improved submariner training methodologies,
and develops cognitive models to simulate human
performance.

DR. SUSAN S. KIRSCHENBAUM is an
Engineering Psychologist in the Combat Systems
Department of the Naval Undersea Warfare Center
Division, Newport, Rhode Island and the Human
Systems Integration (HSI) Lead for NUWCDIVNPT.
She has continuing interests in expertise and in the
effects of uncertainty and other information variables
on decision making. Applications for her research are
in the design of systems for decision support, human-
computer interaction, and display design.

Proceedings of the 19th Conference on Behavior Representation in Modeling and Simulation, Charleston, SC, 21 - 24 March 2010

36

